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Abstract This paper continue the study of the generalized Lennard-Jones potential
started in Bărbosu et al. (J Math Chem 49(9):1961–1975, 2011) for a more general
situation. More precisely we study the two-body problem with generalized Lennard-
Jones potential in an anisotropic space. We will show that the set of initial conditions
leading to collisions and ejections have positive measure. We also study the capture
and escape solutions in the zero-energy case using the infinity manifold. We also show
that the flow on the zero energy manifold of a two-body problem given by the sum of
the Newtonian potential and the two anisotropic perturbations corresponding to the
generalized Lennard-Jones potential is chaotic.

Keywords Anisotropic two-body problem · Generalized Lennard-Jones potential ·
Melnikov method · Chaos

1 Introduction

In computational chemistry and molecular dynamics it is common to use mathemati-
cally simple models to describe the interaction between a pair of atoms or molecules
(see, for instance [7,10]).
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D. Paşca (B)
Department of Mathematics and Informatics, University of Oradea, University Street 1,
410087 Oradea, Romania
e-mail: dpasca@uoradea.ro

C. Valls
Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
e-mail: cvalls@math.ist.utl.pt

123



2672 J Math Chem (2012) 50:2671–2688

The Lennard-Jones potential (see [9]) is a very famous empirical function in molecu-
lar dynamics. It models the interaction between two neutral atoms or molecules, which
are subject to two distinct forces in the limit of large separation and small separation.
These are: an attractive force at long ranges (van der Waals force, or dispersion force),
and a repelling force at short ranges (result of overlapping electron orbitals, referred
to as Pauli repulsion from Pauli’s exclusion principle).

This potential (also called 6–12 potential or 12–6 potential) reads UL J =
4ε
[
(σ/r)6 − (σ/r)12

]
, where: ε = depth of the potential energy well; σ = finite

distance at which the interparticle potential is zero; r = distance between the two
particles. These parameters can be fitted to reproduce experimental data, or can be
deduced from results of accurate quantum chemistry calculations; an excellent expo-
sure in this regard, together with a discussion on the validity of the use of clas-
sical approximations for interatomic and intermolecular interactions may be found
in [2].

The Lennard-Jones potential is an empirical approximation. The form of the repul-
sion term, in (1/r)12, has no theoretical substantiation. Actually, the repelling force
should depend exponentially on the distance. But the repulsion term in the Lennard-
Jones formula is more convenient due to the ease and efficiency of computing the
square of (1/r)6. It physically originates in Pauli’s principle, but the exponent 12 was
chosen exclusively because of ease of computation. As to the attractive long-range
potential, it is derived from dispersion interactions.

Even if it is an empirical model, the Lennard-Jones potential proved itself to be a
relatively good approximation. It is often used to describe the properties of gases, and
to model dispersion and overlap interactions in molecular models.

The problem we approach in this paper is the anisotropic two-body problem with
generalized Lennard-Jones potential. It is clear that this type of potential covers much
more physical situations than the original Lennard-Jones one. We have to point out
the fact that we are interested here only in the mathematical aspects of the dynamics
and not in the concrete physical ones. The strategy and methods used in this paper
follow closely [11].

The objective of this paper is to describe the flow of our system on the infinity
manifold. In Sect. 2 using the McGehee transformations we study the so-called colli-
sion manifold which is important since the structure of the phase space of the system
depends on the behavior of the solutions on this manifold. In Sect. 3 we describe
the flow of our system on and near collision manifold. In particular we classify the
collision-ejection orbits and prove that the set of initial conditions leading to them has
positive measure. In Sect. 4 we investigate the existence of heteroclinic orbits on the
collision manifold and we show that for a = 6, b > a and an open and dense set of
values of μ, saddle–saddle connections do not exist on the collision manifold. Finally,
in Sect. 5 we consider a potential that is the sum of the classical Keplerian potential
and an anisotropic perturbation coming from the generalized Lennard-Jones potential
studied in the previous sections (again with the parameter μmeasuring the strength of
the anisotropy). With this model we obtain an extra dynamical property that we could
not obtain for our initial potential given in the previous sections. Such mixed potential
can be used, among others, to understand the dynamics of starts around black holes.
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We apply the Melnikov method to show that the flow on the zero-energy manifold of
the new potential is chaotic.

2 Equations of motion and symmetries

We consider the Hamiltonian

H ′(q,p) = 1

2

(
pT M−1p

) + V (q)

where H ′ : (R2 \ {0}) × R
2 → R, the mass matrix

M−1 =
(
μ 0
0 1

)
.

with μ ≥ 1, and the potential energy

V (q) = − A

‖q‖a
+ − B

‖q‖b

with 2 < a < b − 1 and A > 0, B > 0.
The goal of study the anisotropic two-body problem with generalized Lennard-

Jones potential is to described the solutions of the Hamiltonian system associated to H ′,

{
q̇ = M−1p,
ṗ = − grad V (q).

(1)

They are a one parameter family of Hamiltonian systems depending analytically
on the parameter μ ≥ 1. This system described the two-body problem with gener-
alized Lennard-Jones potential when μ = 1 (see [1]), and the case in which μ < 1
the attraction-repulsive is weakest in the direction of the q1–axis and strongest in
that of the q2–axis. The situation is reversed if μ > 1. Since both remaining cases
have a weakest-force and a strongest-force direction, we can assume without loss of
generality that μ > 1.

From now on, we shall consider the Hamiltonian system,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇1 = p1,

q̇2 = p2,

ṗ1 = − μAaq1

(μq2
1 + q2

2 )
a
2 +1

+ μBbq1

(μq2
1 + q2

2 )
b
2 +1

,

ṗ2 = − Aaq2

(μq2
1 + q2

2 )
a
2 +1

+ Bbq2

(μq2
1 + q2

2 )
b
2 +1

,
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associated to the Hamiltonian,

H(q,p) = 1

2
‖p‖2 + V (q)

where

V (q) = − A

(μq2
1 + q2

2 )
a
2

+ B

(μq2
1 + q2

2 )
b
2

(2)

and H : (R2 \ {0})×R
2 → R. We remark that the Hamiltonian systems associated to

H and H ′ are equivalent and the angular momentum, C(q,p) = q ∧ p, is an integral
if and only if μ = 1.

We consider a 2n-dimensional manifold M together with a diffeomorphism R of
M satisfying,

(1) R2 = identity and
(2) dim (Fix (R)) = n

then, R is called a reversing involution. A smooth vector field X on M is called
R-reversible if DR(X) = −X R; for more details on reversible systems see [4].

It is easy to verify that the anisotropic two-body problem with generalized
Lennard-Jones potential (1) is Si –reversible for i = 0, 1, 2 where,

S0(q1, q2, p1, p2) = (q1, q2,−p1,−p2),

S1(q1, q2, p1, p2) = (q1,−q2,−p1, p2),

S2(q1, q2, p1, p2) = (−q1, q2, p1,−p2).

This means that if γ (t) = (q1(t), q2(t), p1(t), p2(t)) is a solution of the aniso-
tropic two-body problem with generalized Lennard-Jones potential such that γ (0)
belongs to Fix(S0), Fix(S1) or Fix(S2), then (q1(−t), q2(−t),−p1(−t),−p2(−t)),
(q1(−t),−q2(−t),−p1(−t), p2(−t)) or (−q1(−t), q2(−t), p1(−t),−p2(−t)) is,
respectively, a solution.

The symmetry S0 is the usual symmetry with the respect to the zero velocity curve,
which is presented by all the Hamiltonian systems where the Hamiltonian can be
written as kinetic energy (pT M−1p)/2, plus potential energy, V (q).

A plane in the phase space is called invariant plane if and only if every orbit which
has a point in the plane is contained in it.

Let Vq be the gradient and Vqq be the Hessian of the potential V . Set T =
−J Vqq J Vq , where

J =
(

0 1
−1 0

)
.

By Lemma 2.1 of [3], the irreductible factors of degree 1 of the equation 〈T, J Vq〉 = 0
are the projections of the invariant planes on the configuration plane. Here, 〈·, ·〉denotes
the Euclidian inner product.
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If V (q) is given by (2) then we have

〈T, J Vq〉 = μ(1 − μ)q1q2

( Aa

(μq2
1 + q2

2 )
a
2 +1

− Bb

(μq2
1 + q2

2 )
b
2 +1

)3
.

Therefore, the unique invariant planes of (1) are,

π1 = {(0, q2, 0, p2) : (q2, p2) ∈ (
R \ {0}) × R},

π2 = {(q1, 0, p1, 0) : (q1, p1) ∈ (
R \ {0}) × R},

where for i = 1, 2, πi is invariant under the symmetry S j for j = 0, 1, 2. In short we
have proved the following proposition.

Proposition 1 The anisotropic two-body problem with generalized Lennard-Jones
potential has only two invariant planes, π1 and π2.

3 The infinity manifold

McGehee’s coordinates (r, θ, v, u) are defined by (for more details see [5]):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

r =
√

q2
1 + q2

2 , θ = arctan
(q2

q1

)
,

y = q1 p1 + q2 p2√
q2

1 + q2
2

, x = q1 p2 − q2 p1√
q2

1 + q2
2

,

v = r
b
2 y, u = r

b
2 x, dτ = r− b+2

2 dt .

(3)

Then the Hamiltonian system associated to H becomes:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ṙ = rv,

v̇ = b

2
v2 + u2 − rb−a Aa

�
a
2

+ Bb

�
b
2

,

θ̇ = u,

u̇ =
(b

2
− 1

)
uv + μ− 1

2
sin 2θ

[
rb−a Aa

�
a
2 +1

− Bb

�
b
2 +1

]
,

(4)

where we keep the same “dot” notation for the derivative d/dτ , and � = μ cos2 θ +
sin2 θ .

Now, the relation energy is given by:

1

2
(u2 + v2)− rb−a A

�
a
2

+ B

�
b
2

= hrb. (5)
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Remark 1 There is no collision manifold since if r = 0 then from the energy relation
we get

1

2
(u2 + v2)+ B

�
b
2

= 0

which is impossible for B > 0.

Remark 2 There are no equilibria for positive energy levels.
Indeed, from the conservation of energy (5) if we equating the right side of the

system (4) to zero, and taking into account the conservation of energy, the following
relations must be satisfied:

u = v = 0
B

�
b
2

(a − b) = hrba,

and it follows that for h > 0, the equation cannot be satisfied.

Now we investigate the dynamics on the zero energy level set with focus on asymp-
totic configurations. Since unbounded motions are characterized by an infinity radius
r of the system, we begin by using an inverting transformation that introduces

ρ = 1/r

as an inverse measure of the size. Thus motions with ρ → 0 correspond to physical
situations in the size r of the system becomes unbounded. When h = 0, the energy
relation take the form

1

2
(u2 + v2)− rb−a A

�
a
2

+ B

�
b
2

= 0.

With the transformations

ū := uρ
b−a

2 , v̄ := vρ
b−a

2

the energy relation becomes

ū2 + v̄2 = 2A

�
a
2

− 2B

�
b
2

ρb−a . (6)

We define the infinity manifold I0 as

I0 :=
{
(ρ, v̄, θ, ū)

∣
∣∣ ρ = 0, ū2 + v̄2 = 2A

�
a
2

}
. (7)

Note that I0 is a torus, i.e. θ ∈ S
1. After rescaling the time τ with the transformation

dτ = ρ
b−a

2 ds, system (4) (with h = 0) becomes
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̇ = −ρv̄
˙̄v = a

2
v̄2 + ū2 − Aa

�
a
2

+ ρb−a Bb

�
b
2

θ̇ = ū

˙̄u =
(a

2
− 1

)
ūv̄ + μ− 1

2
sin 2θ

(
Aa

�
a
2 +1

− ρb−a Bb

�
b
2 +1

)

(8)

where we keep the same “dot” notation for the derivative d/ds. The flow on the infinity
manifold is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˙̄v =
(

1 − a

2

)
ū2

θ̇ = ū

˙̄u =
(a

2
− 1

)
ūv̄ + μ− 1

2
sin 2θ

Aa

�
a
2 +1

.

(9)

Lemma 2 All the equilibrium solutions of the flow given by (8) lie on the infinity
manifold I0 and they satisfy:

ρ = 0, v̄ = ±
√

2A�− a
2 ,

θ = 0,
π

2
, π,

3π

2
, ū = 0

Proof Imposing that (ρ, v̄, θ, ū) is an equilibrium point of system (8), it must satisfy
ρ̇ = ˙̄v = θ̇ = ˙̄u = 0. It follows from ρ̇ = θ̇ = 0, that in particular, ρv̄ = 0 and
ū = 0. If ρ 
= 0, we must have v̄ = 0, but then we reach a contradiction with the
energy relation (6) taking into account that a, b, A, B > 0 and a 
= b. Indeed, from
the second equation in (8) we get

ρb−a = Aa

Bb
�

b−a
2

and from the energy relation (6) we get

ρb−a = A

B
�

b−a
2

which implies a = b, contradiction. Thus, from the first equation in (8) we get ρ = 0

and then the second one yields v̄ = ±
√

2A�− a
2 Finally, the last equation in (8) yields

μ− 1

2
sin 2θ

(
Aa

�
a
2 +1

− ρb−a Bb

�
b
2 +1

)
= 0,

that is, sin 2θ = 0, which concludes the proof of the lemma. ��
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The equilibrium points of the flow on the infinity manifold I0 are:

v̄ = ±
√

2A�− a
2 , θ = 0,

π

2
, π,

3π

2
, ū = 0. (10)

We denote by E±
0 , E±

π/2, E±
π and E±

3π/2, respectively, the equilibrium points. Clearly
the superindex matches the sign of v and the subindex matches the value of θ . We
observe that �(0) = �(π) = μ and �(π/2) = �(3π/2) = 1. Let

a∗ = 1 + 1

2a

(a

2
− 1

)2
.

Theorem 3 On the infinity manifold I0, the equilibria E±
0 and E±

π are saddles. When
μ ∈ (1, a∗] the equilibria E±

π/2 and E±
3π/2 are saddles and when μ ∈ (a∗,+∞) are

saddle-foci. Outside I0, the equilibria E+
0 , E+

π , E−
π/2 and E−

3π/2 have a local one-

dimensional unstable analytic manifold, whereas E−
0 , E−

π , E+
π/2 and E+

3π/2 have a
local one-dimensional stable analytic manifold.

Proof Consider the function

G(ρ, v̄, θ, ū) = ū2 + v̄2 − 2A

�
a
2

+ 2B

�
b
2

ρb−a .

The surface defined by the equation G(ρ, v̄, θ, ū) = 0 is a three-dimensional manifold.
At every point y of this manifold, the tangent space is given by

TyG = {(ρ, v̄, θ, ū) | ∇G(y) · (ρ, v̄, θ, ū) = 0}.

At any equilibrium point x , the tangent space is defined by

Tx G = {(ρ, v̄, θ, ū) | v̄ = 0}.

One can easy check that at the equilibria E±
0 and E±

π the linearized system corre-
sponding to (8) has the matrix

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎝

∓√
2Aμ−a/2 0 0 0

0 ±a
√

2Aμ−a/2 0 0

0 0 0 1

0 0 (μ− 1)Aaμ−a/2 ±
(a

2
− 1

)√
2Aμ−a/2

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠

.
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Therefore, the linear part of the vector field (8) restricted to the tangent space of E±
0

and E±
π is given by

l =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎝

∓√
2Aμ−a/2ρ

0

ū

(μ− 1)Aaμ−a/2θ ±
(a

2
− 1

)√
2Aμ−a/2ū

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎠

.

As a basis for the tangent space of E±
0 and E±

π we can take the vectors

η1 =

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠ , η2 =

⎛

⎜
⎜
⎝

0
0
1
0

⎞

⎟
⎟
⎠ , η3 =

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠ . (11)

The representation of the linear part l relative to this basis is given by the matrix

L =

⎛

⎜⎜⎜
⎝

∓√
2Aμ−a/2 0 0

0 0 1

0 (μ− 1)Aaμ−a/2 ±
(a

2
− 1

)√
2Aμ−a/2

⎞

⎟⎟⎟
⎠
.

The eigenvalues of this matrix are

λ1 = ∓
√

2Aμ−a/2,

λ2 = 1

2

{

±
(a

2
− 1

)√
2Aμ−a/2 +

√

2Aμ−a/2
(a

2
− 1

)2 + 4(μ− 1)Aaμ−a/2

}

,

λ3 = 1

2

{

±
(a

2
− 1

)√
2Aμ−a/2 −

√

2Aμ−a/2
(a

2
− 1

)2 + 4(μ− 1)Aaμ−a/2

}

.

Note that since a > 2, A > 0 and μ > 1, we have that λi ∈ R for i = 1, 2, 3.
So the equilibria are hyperbolic. The equilibria E−

0 and E−
π have a one-dimensional

stable manifold and a two-dimensional unstable one, whereas E+
0 and E+

π have a
two-dimensional stable manifold and a one-dimensional unstable one.
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At the equilibria E±
π/2 and E±

3π/2 the same linearized system has the matrix

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

∓√
2A 0 0 0

0 ±a
√

2A 0 0

0 0 0 1

0 0 −(μ− 1)Aa ±
(a

2
− 1

)√
2A.

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

.

Using again the vectors in (11) as a basis for the tangent space of E±
π/2 and E±

3π/2, the
linear part is given by the matrix

L1 =

⎛

⎜⎜⎜
⎝

∓√
2A 0 0

0 0 1

0 −(μ− 1)Aa ±
(a

2
− 1

)√
2A.

⎞

⎟⎟⎟
⎠
.

The eigenvalues of this matrix are

λ1 = ∓√
2A,

λ2 = 1

2

{

±
(a

2
− 1

)√
2A +

√

2A
(a

2
− 1

)2 − 4(μ− 1)Aa

}

,

λ3 = 1

2

{

±
(a

2
− 1

)√
2A −

√

2A
(a

2
− 1

)2 − 4(μ− 1)Aa

}

.

Let denote

δ = 2A
(a

2
− 1

)2 − 4(μ− 1)Aa.

Its easy to check that

1. If μ ∈ (1, a∗) then δ > 0 and consequently λ2,3 ∈ R.
2. If μ = a∗ then δ = 0 and consequently λ2 = λ3 ∈ R.
3. If μ ∈ (a∗,+∞) then δ < 0 and consequently λ2,3 ∈ C.

Now we summerize the signs of the eigenvalues at each equilibrium point:

– at E+
0 = (0,

√
2A/μa/2, 0, 0) we have λ1 < 0, λ2 > 0, λ3 < 0.

– at E−
0 = (0,−√

2A/μa/2, 0, 0) we have λ1 > 0, λ2 > 0, λ3 < 0.

– at E+
π = (0,

√
2A/μa/2, π, 0) we have λ1 < 0, λ2 > 0, λ3 < 0.

– at E−
π = (0,−√

2A/μa/2, π, 0) we have λ1 > 0, λ2 > 0, λ3 < 0.

For the other four equilibrium points we have different situations depends on the values
of the parameter μ as follows:

1. If μ ∈ (1, a∗] we get:
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– at E+
π/2 = (0,

√
2A, π/2, 0) we have λ1 < 0, λ2 > 0, λ3 > 0.

– at E−
π/2 = (0,−√

2A, π/2, 0) we have λ1 > 0, λ2 < 0, λ3 < 0.

– at E+
3π/2 = (0,

√
2A, 3π/2, 0) we have λ1 < 0, λ2 > 0, λ3 > 0.

– at E−
3π/2 = (0,−√

2A, 3π/2, 0) we have λ1 > 0, λ2 < 0, λ3 < 0.

2. If μ ∈ (a∗,+∞) we get:
– at E+

π/2 = (0,
√

2A, π/2, 0) we have λ1 < 0, Re λ2 > 0, Re λ3 > 0.

– at E−
π/2 = (0,−√

2A, π/2, 0) we have λ1 > 0, Re λ2 < 0, Re λ3 < 0.

– at E+
3π/2 = (0,

√
2A, 3π/2, 0) we have λ1 < 0, Re λ2 > 0, Re λ3 > 0.

– at E−
3π/2 = (0,−√

2A, 3π/2, 0) we have λ1 > 0, Re λ2 < 0, Re λ3 < 0.

4 Connections on the infinity manifold

To understand the global flow on the infinity manifold I0, we analyze the invariant
submanifolds associated to the equilibrium points on the infinity manifold as well as
their connection orbits.

We introduce the change of variables

ū =
√

2A

�
a
4

sinψ, v̄ =
√

2A

�
a
4

cosψ.

Then Eq. (9) become on I0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ̇ =
√

2A

�
a
4

sinψ

ψ̇ =
(a

2
− 1

)√
2A

�
a
4

sinψ + μ− 1

2
sin 2θ

√
Aa√

2�
a
4 +1

cosψ.

(12)

The equilibrium points in the variables (θ, ψ) are

E+
0 = (0, 0), E−

0 = (0, π),
E+
π = (π, 0), E−

π = (π, π),

E+
π/2 =

(
π
2 , 0

)
, E−

π/2 =
(
π
2 , π

)
,

E+
3π/2 =

(
3π
2 , 0

)
, E−

3π/2 =
(

3π
2 , π

)
.

For the following result we will restrict to the case a = 6. We note that the Lennard-
Jones potential corresponds to a = 6 and b = 12.

Theorem 4 For a = 6 and an open dense set of real numbers μ > 1, the unstable
manifold at E−

π = E−
3π/2 does not intersect the stable manifold at E+

π and the unstable

manifold at E−
π does not intersect the stable manifold at E+−π = E+

3π/2.
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Proof Dividing the second equation in (12) by the first one, we get

dψ

dθ
=
(a

2
− 1

)
+ a

4

(μ− 1)

�
sin 2θ

cosψ

sinψ
= F(θ, ψ, ε) (13)

where ε = μ− 1 and � = μ cos2 θ + sin2 θ = 1 + ε cos2 θ .
We note that Eq. (13) has the symmetries

(θ, ψ) → (−θ, π − ψ) and (θ, ψ) → (−θ,−ψ). (14)

We first consider the unstable manifolds W u(π, 0) = W u(−π, 0), where we have
taken the notation W u(θ, ψ) to denote the unstable manifold of the point E in the
(θ, ψ)-variables. In this case, W u(π, 0) is the unstable manifold of E+

π . When ε = 0,
Eq. (13) yields

dψ

dθ
= a

2
− 1 that is (a − 2)θ = 2ψ − π (15)

and clearly W s(π, π) coincides with W s(−π, 0). Consider the branch of W u(−π, 0) =
W u(π, 0) that contains (0, π/2). This curve lies on the line (13). When ε 
= 0, this
branch on the unstable manifold varies smoothly on I0. Then ψ = ψ(θ, ε) denotes
the ψ-coordinate of this curve satisfying ψ(−π, ε) = 0 for all ε. We observe that it
follows from (13) that ψ satisfies the equation

ψ(θ, ε) =
θ∫

−π
F(ζ, ψ(ζ ), ε)dζ. (16)

For ε sufficiently small we write

ψ(θ, ε) = ψ(θ, 0)+ ε
∂ψ

∂ε
(θ, 0)+ ε2 ∂

2ψ

∂ε2 (θ, 0)+ O(ε3). (17)

Note that ψ(θ, 0) = (a/2 − 1)θ + π/2 and that from (16) we have

∂ψ

∂ε
(θ, 0) =

θ∫

−π

[
∂

∂ε
F(ζ, ψ(ζ, 0), 0)+ ∂

∂ψ
F(ζ, ψ(ζ, 0), 0)

∂ψ

∂ε
(ζ, 0)

]
dζ. (18)

From (13) we have

F(θ, ψ, ε) =
(a

2
− 1

)
+ a

4
ε sin 2θ

cosψ

sinψ

1

1 + ε cos2 θ
(19)

and thus

∂F

∂ε
= a

4
sin 2θ

cosψ

sinψ

1

1 + ε cos2 θ
− a

4
ε sin 2θ

cosψ cos2 θ

sinψ(1 + ε cos2 θ)2
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which yields that

∂F

∂ε |ε=0,θ=ζ,ψ=ψ(ζ,0)
= a

4
sin 2ζ

cosψ(ζ, 0)

sinψ(ζ, 0)
(20)

and

∂F

∂ψ |ε=0,θ=ζ,ψ=ψ(ζ,0)
= 0. (21)

Then from (20) and (21) we get

∂ψ

∂ε
(θ, 0) = a

4

θ∫

−π
sin 2ζ

cosψ(ζ, 0)

sinψ(ζ, 0)
dζ.

Furthermore from (15), ψ(ζ, 0) = π/2 + (a/2 − 1)ζ and hence

∂ψ

∂ε
(θ, 0) = a

4

θ∫

−π
sin 2ζ

cos
[
π
2 + ( a

2 − 1
)
ζ
]

sin
[
π
2 + ( a

2 − 1
)
ζ
] dζ

= −a

4

θ∫

−π
sin 2ζ

sin
[( a

2 − 1
)
ζ
]

cos
[( a

2 − 1
)
ζ
]dζ

(22)

Since a = 6 Eq. (22) becomes

∂ψ

∂ε
(θ, 0) = −3

2

θ∫

−π
sin 2ζ

sin 2ζ

cos 2ζ
dζ = 3

4

(
log

cos θ − sin θ

cos θ + sin θ
+ sin 2θ

)
. (23)

On θ = 0, ∂ψ/∂ε(0, 0) = 0. Hence, we compute ∂2ψ/∂ε2(0, 0). It follows from (18)
that

∂2ψ

∂ε2 (θ, 0) =
θ∫

−π

[
∂2

∂ε2 F(ζ, ψ(ζ, 0), 0)+ 2
∂2

∂ε∂ψ
F(ζ, ψ(ζ, 0), 0)

∂ψ

∂ε
(ζ, 0)

+ ∂2

∂ψ2 F(ζ, ψ(ζ, 0), 0)
(∂ψ
∂ε
(ζ, 0)

)2

+ ∂

∂ψ
F(ζ, ψ(ζ, 0), 0)

∂2ψ

∂ε2 (ζ, 0)

]
dζ.
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From (19) we have

∂2 F

∂ε2 |ε=0,θ=ζ,ψ=ψ(ζ,0)
= −3 sin 2ζ cos2 ζ

cosψ(ζ, 0)

sinψ(ζ, 0)
,

∂2 F

∂ε∂ψ |ε=0,θ=ζ,ψ=ψ(ζ,0)
= −3

2
sin 2ζ

1

sin2 ψ(ζ, 0)
,

∂F

∂ψ |ε=0,θ=ζ,ψ=ψ(ζ,0)
= 0,

∂2 F

∂ψ2 |ε=0,θ=ζ,ψ=ψ(ζ,0)
= 0.

Using also (23) we get

∂2ψ

∂ε2 (θ, 0) = −3

θ∫

−π
sin 2ζ cos2 ζ

sin 2ζ

cos 2ζ
dζ

− 3

θ∫

−π

sin 2ζ

cos2 2ζ

[
3

4
log

cos ζ − sin ζ

cos ζ + sin ζ
+ 3

4
sin 2ζ

]
dζ,

and thus on θ = 0

∂2ψ

∂ε2 (0, 0) = −3π

4
+ 9π

4
= 3π

2
> 0.

Then for ε > 0 we have that ψ(0, ε) > 0 and then v = √
2A/�3/2 cosψ(0, ε) < 0.

By the first relation in (14) the stable manifold through (−π, 0) is mapped into the
unstable manifold through (π, π). Hence the stable manifold intersects the line θ = 0
at some point (0, ψ0) such that v(0, ψ0) > 0, a contradiction. Consequently, for ε > 0
sufficiently small, the stable manifold does not intersect the unstable one.

Remark 3 We conjecture that the result stated on the theorem above is still valid for
values a greater than 6 but for proof one need to compute derivatives of higher and
higher orders which becomes more and more difficult to be evaluated.

5 Melnikov method

In this section, we study the appearance of chaos on the zero-energy manifold for the
Hamiltonian

H = 1

2
(p2

1 + p2
2)− α

(q2
1 + q2

2 )
1/2

− A

(μq2
1 + q2

2 )
a/2

+ B

(q2
1 + q2

2 )
b/2

(24)
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truncated to the second order in ε, A, B and α, that is, the Hamiltonian

H = 1

2
(p2

1 + p2
2)− α

r
− A

ra
+ B

rb
+ εA

a cos2 θ

2ra
− εB

b cos2 θ

2rb

= H0(p1, p2, r)+ AH1(r)+ B H2(r)+ εAH3(r, θ)+ εB H4(r, θ), (25)

with ε, α, A, B � 1, i.e. with small values of ε, α, A, B, being A and B of the same
order smaller than α.

For the hamiltonian system with Hamiltonian given in (25) we have the following
result.

Theorem 5 For ε, α, A, B sufficiently small, with ε, A, B � α of the same order, the
Hamiltonian system with Hamiltonian H given in (25) exhibits chaotic dynamics on
the zero energy manifold provide that

Aa

Bb

= I2,b

I2,a
,

where I2,a and I2,b are define below.

Proof Consider the Hamiltonian H in (25). We will apply the Melnikov perturbative
method described in detail in [8], following the ideas in [6]. To apply the Melnikov
method we need to obtain the homoclinic manifold, that is, the set of solutions of the
unperturbed equation which are asymptotic to r = ∞, ṙ = 0. For this, we consider
the unperturbed problem (ε = A = B = 0) in (25), that is, H0, and we consider its
parabolic solutions on the zero-energy manifold. These solutions satisfy the equations

ṙ = ±
√

2αr − k2

r
, θ̇ = k

r2 , (26)

where k 
= 0 is the angular momentum, the − sign holds for t < 0 and the + sign
holds for t > 0. From (26) we get

±t = k2 + αr

3α2

√
2rα − k2 + const.,

θ = ±2 arctan

√
2rα − k2

k
+ const.

(27)

We denote by R = R(t) and � = �(t) the expressions giving the dependence of r
and of θ on the time t which can be obtained by inverting the expressions in (27) with
the condition R(0) = k2/2 and�(0) = 0. As pointed out in [8], it is important to note
that R(t) is an even function of the time t and �(t) is an odd function of the time t .
The choice of �(0) = 0 corresponds to select the solution describing the parabola
with axis coinciding with the x-axis going to +∞ when x → −∞.
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For p = k2 
= 0, the parabolic orbits can also be described in parametric form as

η = tan
θ

2
, r = p

2α
(1 + η2)

t = p3/2η(3 + η2)

6α2 , cos 2θ = 2
(1 − η2)2

(1 + η2)2
− 1.

(28)

The homoclinic manifold is thus given by the family of solutions

R(t − t0), �(t − t0)+ θ0,

where R(t) and�(t) where defined above and t0, θ0 are arbitrary. Since the Hamilto-
nian H0 + AH1(r)+ B H2(r) is integrable it follows from (25) that the first nonvan-
ishing terms of the Melnikov integrals are of the order εA and εB.

Taking into account that H3(r, θ) ∼ 1/ra , H4(r, θ) ∼ 1/rb and 2 < a < b we
have that the Melnikov integrals converge and we can apply the Melnikov method (see
again [8] for details). Proceeding in the same way as in [8] and in [6] and taking into
account that the perturbations εAH3(r, θ) and εB H4(r, θ) are not time dependent, the
Melnikov method for H in (25) summarizes in obtaining the solutions of M(θ0) = 0
with

M(θ0) = εA
a

2

∞∫

−∞

sin[2(�(t)+ θ0)]
R(t)a

dt − εB
b

2

∞∫

−∞

sin[2(�(t)+ θ0)]
R(t)b

dt. (29)

Such solutions correspond to intersections at the orders εA, εB of the positively and
negatively asymptotic sets of the critical point at infinity. If one such solution exists
then there are infinitely many and if the solutions correspond to simple zeroes of M(θ0)

then the intersection is transversal and for ε, A and B sufficiently small, higher order
terms are not going to destroy the intersections.

Using that sin[2(�(t)+ θ0)] = sin[2�(t)] cos(2θ0)+ cos[2�(t)] sin(2θ0) we can
rewrite the integral in (29) as

M(θ0) = I1 cos(2θ0)+ I2 sin(2θ0), (30)

with

I1 = εA
a

2

∞∫

−∞

sin[2(�(t)]
R(t)a

dt − εB
b

2

∞∫

−∞

sin[2(�(t)]
R(t)b

dt,

I2 = εA
a

2

∞∫

−∞

cos[2(�(t)]
R(t)a

dt − εB
b

2

∞∫

−∞

cos[2(�(t)]
R(t)b

dt.

(31)

Using that R(t) is even in t and �(t) is odd in t we have that I1 = 0 and

M(θ0) = I2 sin(2θ0).
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Then M(θ0) has infinitely many zeroes, provided that I2 
= 0. Therefore, the proof of
the theorem will be completed if we verify that I2 
= 0. We rewrite I2 as

I2 = εA
a

2
I2,a − εB

b

2
I2,b (32)

with

I2,β =
∞∫

−∞

cos[2(�(t)]
R(t)β

dt, β = a, b.

We compute I2,β using the parametric form of the parabolic orbits defined in (28). Since

dt = p3/2

2α2 (1 + η2)dη,

we can write

I2,β = 2β−1αβ−2 p3/2−β
∞∫

−∞

1

(1 + η2)β−1

(2(1 − η2)2

(1 + η2)2
− 1

)
dη

=
αβ−22β−2 p3/2−β√π�

(
β + 1

2

)

(β − 1)
(
β − 1

2

)(
β − 3

2

)
�(β − 1)

(β2 − 5β + 6).

(33)

Consequently, I2 
= 0 is equivalent with

Aa

Bb

= I2,b

I2,a
. (34)

Remark 4 For the classical Lennard-Jones potential, when a = 6 and b = 12, relation
(34) is equivalent with

A

B

= 281.18

(α
p

)6
.

Remark 5 We note that if α = 0, which means that we don’t perturb the Lennard-
Jones potential by a small order Newtonian potential, the Melnikov method would not
be conclusive. This was the reason to consider in this section the Hamiltonian (24).
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1. M. Bărbosu, V. Mioc, D. Paşca, F. Szenkovits, The two-body problem with generalized Lennard-Jones
potential. J. Math. Chem. 49(9), 1961–1975 (2011)

2. S.G. Brush, Interatomic forces and gas theory from Newton to Lennard-Jones. Arch. Rational Mech.
Anal. 39, 1–29 (1970)

3. R.C. Churchill, G. Pecelli, D.L. Rod, Isolate unstable periodic orbits. J. Diff. Eqs. 17, 329–348 (1975)
4. R.L. Devaney, Reversible diffeomorphisms and flows. Trans. Am. Math. Soc. 218, 90–113 (1976)
5. R.L. Devaney, Singularities in classical mechanical systems. Prog. Math. Birkhäuser 10, 211–

333 (1981)
6. F. Diacu, E. Perez, M. Santoprete, The Kepler problem with anisotropic perturbations. J. Math. Phys.

46 (2005)
7. D. Frenkel, B. Smit, Understanding Molecular Simulation, 2nd edn. (Academic Press, San

Diago, 2002)
8. G. Gicoma, M. Santoprete, An approach to Melnikov theory in celestial mechanics. J. Math.

Phys. 41, 805–815 (2000)
9. J.E. Lennard-Jones, Cohesion. Proc. Phys. Soc. 43, 461–482 (1931)

10. E.G. Lewars, Computational Chemistry: Introduction to the Theory and Applications of Molecular
and Quantum Mechanics (Springer, Berlin, 2003)

11. C. Valls, On the anisotropic potentials of Manev-Schwarzschild type. Int. J. Bifurc. Chaos 20(4), 1233–
1243 (2010)

123


	Qualitative analysis of the anisotropic two-body problem with generalized Lennard-Jones potential
	Abstract
	1 Introduction
	2 Equations of motion and symmetries
	3 The infinity manifold
	4 Connections on the infinity manifold
	5 Melnikov method
	Acknowledgments
	References


